Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
Used ordering:
Polynomial interpretation [25]:

POL(add(x1, x2)) = 2 + 2·x1 + x2   
POL(app(x1, x2)) = x1 + x2   
POL(nil) = 0   
POL(reverse(x1)) = x1   
POL(shuffle(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

shuffle(nil) → nil
Used ordering:
Polynomial interpretation [25]:

POL(add(x1, x2)) = x1 + x2   
POL(app(x1, x2)) = x1 + 2·x2   
POL(nil) = 0   
POL(reverse(x1)) = 2·x1   
POL(shuffle(x1)) = 1 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

reverse(nil) → nil
Used ordering:
Polynomial interpretation [25]:

POL(add(x1, x2)) = 1 + 2·x1 + x2   
POL(app(x1, x2)) = x1 + x2   
POL(nil) = 0   
POL(reverse(x1)) = 1 + x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(add(n, x)) → app(reverse(x), add(n, nil))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(add(n, x)) → app(reverse(x), add(n, nil))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

reverse(add(n, x)) → app(reverse(x), add(n, nil))
Used ordering:
Polynomial interpretation [25]:

POL(add(x1, x2)) = 1 + 2·x1 + x2   
POL(app(x1, x2)) = x1 + x2   
POL(nil) = 0   
POL(reverse(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
Used ordering:
Polynomial interpretation [25]:

POL(add(x1, x2)) = 1 + 2·x1 + x2   
POL(app(x1, x2)) = 2 + 2·x1 + x2   
POL(nil) = 1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.