Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
Used ordering:
Polynomial interpretation [25]:
POL(add(x1, x2)) = 2 + 2·x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
shuffle(nil) → nil
Used ordering:
Polynomial interpretation [25]:
POL(add(x1, x2)) = x1 + x2
POL(app(x1, x2)) = x1 + 2·x2
POL(nil) = 0
POL(reverse(x1)) = 2·x1
POL(shuffle(x1)) = 1 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
reverse(nil) → nil
Used ordering:
Polynomial interpretation [25]:
POL(add(x1, x2)) = 1 + 2·x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(nil) = 0
POL(reverse(x1)) = 1 + x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(add(n, x)) → app(reverse(x), add(n, nil))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(add(n, x)) → app(reverse(x), add(n, nil))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
reverse(add(n, x)) → app(reverse(x), add(n, nil))
Used ordering:
Polynomial interpretation [25]:
POL(add(x1, x2)) = 1 + 2·x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(nil) = 0
POL(reverse(x1)) = 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
Used ordering:
Polynomial interpretation [25]:
POL(add(x1, x2)) = 1 + 2·x1 + x2
POL(app(x1, x2)) = 2 + 2·x1 + x2
POL(nil) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.